之间网

我们所使用的电动车充电器到底有哪几类

行业资讯 电机设备网
导读 自从有了蓄电池以来的100多年里,充电器就相伴相随。然而随着电动车的发展,充电器也随着它进入了寻常百姓家。现在只要有电动车的家庭都有

自从有了蓄电池以来的100多年里,充电器就相伴相随。然而随着电动车的发展,充电器也随着它进入了寻常百姓家。现在只要有电动车的家庭都有充电器。那么,面对着不断发展的电动车行业,我们所使用的电动车充电器到底有哪几类?而这几类的工作原理是怎样的?下面就为大家大致的说下。

01

负脉冲充电器

铅酸电池已经有100多年的历史了,开始全球普遍沿引老的观点和操作规程:充、放电率为0.1C(C是电池容量)寿命较长。美国人麦斯先生为解决快速充电问题,1967年向全世界公布了他的研究成果,用大于1C率脉冲电流充电,充电间歇时对电池放电。放电有利于消除极化、降低电解液温度、提高极板接受电荷的能力。我国一些科技工作者在1969年前后,根据麦斯先生的三定律制作成功了多种品牌的快速充电机。充电循环过程是:

大电流脉冲充电→切断充电通路→对电池短暂放电→停止放电→接通充电通路→大电流脉冲充电……2000年前后,有人将这一原理用到了电动车充电器中,充电过程中,不切断充电通路,用小电阻将电池短路瞬间,进行放电。短路时由于不切断充电 通路,在充电通路中串连了电感。一般在1秒内短路3-5毫秒(1秒=1000毫秒),由于电感里的电流不能跳变,短路时间短促,可以保护充电器的电源转换部分。如果把充电电流方向叫正,放电自然为负了,电动车行业就出现了名词“负脉冲充电器”,而且称可以延长电池寿命等等。像江禾充电器中的延寿型充电器用的基本原理就在于此。

02

三段式充电器

这种充电器类型是如今电动车行业使用最多的一种,所谓的三段式充电器,顾名思义在其充电过程中肯定有着三个阶段。第一个阶段叫恒流阶段,第二个阶段叫恒压阶段,第三个阶段叫涓流阶段。从电子技术角度针对电池而言:第一个阶段叫充电限流阶段,第二个阶段叫高恒压阶段,第三个阶段叫低恒压阶段比较贴切。第二阶段和第三阶段转换时,面板指示灯相应变换,大多数充电器第一、二阶段是红灯,第三阶段变绿灯。  第二阶段和第三阶段的相互转换是由充电电流决定的,大于某电流进入第一第二阶段,小于某电流进入第三阶段。这个电流叫转换电流,也叫转折电流。

以上两种类型的充电器由于三段式充电器在市场上,加个相对于负脉冲充电器要便宜许多,所以现在市场中其所占的市场份额相对来说比较大,大多数消费者都在使用这样的充电器,而这也是现今众多厂家力推的充电类型之一。

充电器维修及常见故障

我们的电动车充电器大部分都是脉冲式充电器。就现在来说,以UC3842为主控芯片的充电器还是占绝大多数,当然也有不少是以TL494为主控芯片的充电器,对于采用这种芯片的充电器本文不做详细阐述。这里给大家简述这类充电器的原理与开关电源的原理及充电过程。

220V的交流电经交流滤波电路滤除外来的杂波信号(同时也防止电源本身产生的高频杂波对电网的干扰),再经二极管桥式整流电路和滤波电路,整流滤波后得到约300V的直流电,送给功率变换电路进行功率转换。功率变换电路中的开关功率管(IGBT)就在脉冲宽度调制控制器(UC3842)输出的脉冲控制信号驱动下,工作在“开”“关”状态,从而将300V直流电切换成宽度可调的高频脉冲电压。把高频脉冲电压送给高频脉冲变压器,其次级就会感应出一定的高频脉冲交流电,并送给高频整流滤波电路进行整流,滤波;最后输出一个很平滑的直流电,供给蓄电池充电。由于蓄电池刚开始充电时和充过一段时间后,蓄电池的容量和端电压均不一样,这就由充电器内部取样电路将取样信号通过光电耦合器(PC817)送入控制电路,经过脉宽调制芯片(UC3842)内部调制,由控制电路的输出端将变宽或变窄的驱动脉冲送到开关功率管的栅极,使变换电路产生的高频脉冲方波也随之变宽或变窄,使蓄电池的充电分别进入:恒流充电,恒压充电和浮充充电这三个充电阶段。

一、充电器无电压输出的故障及处理方法五例 1. 充电器由KA3842和HY358双运算放大器组成,拆开外壳检查发现63V470uf电容爆液,更换后,接着检查有无损坏的元器件和短路,经仔细检查后,通电测试,输出正常,移动电路板后,又测电压变为 67V, 与实际输出过高,有2秒钟后,63V电容微微冒烟,温度升高,眼看爆炸,立即断电.经查发现TL431一脚虚焊,造成稳压失控,烧坏63V电容.

2.拆开充电器,由LM324 贴片IC KA3842组成电路.保险熔断,不敢通电测试,经查,有两只整流管 IN5399 IN5398 击穿,开关场效应管 GFP8N60两脚击穿,IN5399用RL207代换,开关管8N60用PHX7NQ60E代换.然后,保险处接上灯泡,通电灯泡一亮即灭,测量电压正常55.2V,取下灯泡接上保险,给电动车充电,刚接上不到10秒钟,听到叭的一声 , 保险又烧断.经查,开关管,又击穿了,测得KA3842第5脚接地与第6脚短路.更换k3842,接上灯泡测试充电,灯泡 , 以1HZ的频率一闪一闪的,充电器也停了又启,启了又停.取下灯泡,接上保险,一直正常充电,问题排除.

3. 48V 1.8A充电器保险完好,测开关管,电容正常,通电测试,红绿灯同时有频率的一闪一闪,刚启动输出电压为54.5正常,又等一会儿,电压慢慢下降30-36V之间.测TL431,光藕正常,检查其它电阻,都正常阻值.依次更换,开关管8N60,TL431,光藕,63V电容,测得400V电容有320V电压,最后更换PFC电感,电容,均无正常电压输出.并且仔细测量各个限流电阻,与实际阻值相差多的,也更换.还是不能解决.最后从电子城买了LM324更换后,通电测试电压输出正常,红绿灯显示正常,但没有进行下一步带负载充电测试.

4. 拆开后发现烧毁不少地方:进线电路板铜箔烧毁2处,14007整流二极管坏了4个,贴片电阻270坏。还有4个并联的2Ω贴片电阻坏,场效应管坏用6N70替代。全部予以更换后测量输出电压56V修理完毕。

5. 一个48V电动车电池充电器,开盖经检查后发现:电源保险管、桥式整流二极管、UC3842AM、场效应大功率管FQPF8N60C以及该管对地所接的电阻(0.5欧姆2瓦)均损坏,原来屡烧3842是因为LM324局部损坏所造成的!

二、常见的六种故障分析及维修

由于电动车充电器的输入电路工作在高电压、大电流的状态下,因此,故障率最高。如高压大电流整流三极管、滤波电容、开关功率管等;其次较易损坏的就是输出整流部分的整流二极管、保护二极管、滤波电容、限流电阻等;再就是脉宽调制控制器的反馈部分和保护电路部分。

1.烧保险丝

一般情况下,保险丝管熔断说明充电器的内部电路存在短路或过流的故障。这是由于充电器长时间工作在高电压、大电流的状态下,内部器件的故障率较高所致。另外,电网电压的波动,浪涌都会引起充电器内电流瞬间增大而使保险丝熔断。

维修∶首先仔细查看电路板上面的各个元件,看这些元件的外表是否被烧糊或有电解液溢出,闻—闻有无异昧。再测量电源输入端的电阻值,若小于20OkΩ ,则说明后端有局部短路现象,然后分别测量4只整流二极管正,反电阻值和两个限流电阻的阻值,看有无短路或烧坏的;最后再测量电源滤波电容是否能进行正常充放电、开关功率管是否击穿损坏、UC3842及周围元件是否击穿,烧坏等。需要说明的是,因是在线路板上测量,有可能会使测量结果有误或造成误判,因此必要时可把元器件焊下来测量。如果仍然没有上述情况,则测量一下输入电源线及输出电源线是否内部短路。一般情况上,在熔断器熔断故障中,整流二极管,电源滤波电容、开关功率管、UC3842是易损件,损坏的概率可达95%以上,要着重检查这些元器件,就很容易排除故障。

2.无直流电压输出或电压输出不稳定

如果保险丝是完好的,在有负载的情况下.这类故障要原因有:过压、过流保护电路出现开路,短路现象;振荡电路没有工作;电源负载过重,高频整流滤波电路中整流二极管被击穿:滤波电容漏电等。

维修:首先,用万用表测量高频脉冲变压器的各个元器件是否有损坏:排除了高频整流二极管击穿、负载短路的情况后,再测量各输出端的直流电压,如果这时输出仍为零,则可以肯定是电源的控制电路出了故障,最后用万用表静态测量高频滤波电路中整流二极管及低压滤波电容是否损坏,如果上述元器件有损坏,更换好新元器件,一般故障即可排除。但要注意:输出线断线或开焊、虚焊也会造成这种故障,在维修时应注意这种情况。

3.无直流电压输出,但保险丝没断路

这种现象说明充电器未工作,或是工作后进入了保护状态。

维修:首先应判断一下充电器的变控芯片UC3842是否处在工作状态或已经损坏。具体判断方法是:加电测UC3842的7脚对地电压,若7脚电压正常并且8脚有+5∨电压,1、2、4、6脚也会有不同的电压,则说明电路已启振,UC3842基本正常。若7脚电压低,其余管脚无电压,则说明UC3842已损坏。最常见的损坏是7脚对地击穿,6、7脚对地击穿和1、7脚对地击穿。如果这几只脚都未击穿,而充电器还是不能正常启动,也说明UC3842已损坏,应直接更换。若判断芯片没有坏,则再检查开关电栅极的限流电阻是否开焊、虚焊或变值以及开关功率管本身是否性能不良。除此之处,电源输出线断线或接触不良也会造成这种故障,因此在维修时也应注意。

4.直流电压输出过高

这种故障往往是由稳压取样和稳压控制电路异常所至,在充电器中,直流输出、取样电阻、误差取样放大器、光耦合器、电源控制芯片等共同构成了一个闭合的控制环路,任何一处出问题会导致电压升高。

维修:由于充电器有过压保护电路,输出电压过高首先会使过压保护电路动作。因此遇到这种故障,我们可以断开过压保护电路,使电压保护电路不起作用,然后测量开机瞬间的电源主电压。如果测量值比正常值高出1V以上,说明输出电压过高的原因确实在控制环路中。此时应着重检查取样电阻是否变值或损坏,精密基准电压源(TL431)或光耦器(PC817)是否性能不良、变质或损坏。其中精密基准电压源(TL431)极易损坏,我们可用下述方法对精密稳压放大器进行判别:将TL431 的参考端(Ref)与它的阴极(CAThode)相连,串1OkΩ的电阻,接入5∨电压。若阳极(Anode)与阴极之间为2.5V,并且等待片刻还仍为2.5∨,则为好管,否则为坏管。

5.直流电压输出过低

根据维修经验,除稳压控制电路会引起输出电压过低外,还有以下几点原因:

(1)输出电压端整流三极莒、滤波电容失效,可以通过代换法进行判断。

(2)开关功率管的性能下降,导致开关管不能正常导通,使电源的内阻增加,带负载能力下降。

(3)开关功率管的源极通常接一个阻值很小但功率很大的电阻,作为过流保护检测电阻。该电阻的阻值—般在0.2~O.8Ω。如该电阻变值或开焊、接触不良也会造成输出电压过低。

(4)高频脉冲变压器不良,不但造成输出黾压下降,还会造成开关功率管激励不足从而屡损开关管。

(5)高压直流滤波电容不良,造成电源带负载能力差。

(6)电源输出线接触不良,有—定的接触电阻,造成输出电压过低。

(7)电网电压过低。虽然充电器在低压下仍然可以输出额定的充电电压,但当电网电压低于充电器的最低电压限定值时,也会使输出电压过低。

维修∶首先用万用表检查—下高压直流滤波电容是否变质、容量是否下降、能否正常充放电。如无以上问题,则测量一下开关功率管的电极的限流电阻以及源极的过流保护检测电阻是否变值、变质或开焊、接触不良。若无问题,再检查—下高频变压器的铁芯是否完好无损。除此之外还有可能就是输出滤波电容容量降低,或开焊、虚接;电源输出限流电阻变值或虚接;电源输出线虚接等。这些困素都不要放过,都应仔细检查,确保万无—失。

6.散热风扇不转

这种故障原因主要是控制风扇的三极管(一般为8550或8050)损坏,或者风扇本身损坏或风叶被杂物卡住。但有些充电器是采用的是智能散热,对于采用这种方式散热的充电器,热敏电阻损坏的概率是很大的。

维修:首先用万用表测量—下控制风扇的三极管是否损坏,若测得此管未损坏,那就有可能是风扇本身损坏,可以把风扇从电路板上拔下来,另外接上一个12V的直流电(注意正、负极),看是否转动,还要看有无异物卡住。若摆动几下风扇的电线,风扇就转动,则说明电线内部有断线或接头接触不良。若仍不转动,则风扇必坏。对于采用智能散热的充电器来说,除按上述检查外,还应检查一下热敏电阻是否接触不良或损坏、开焊等。但要注意此热敏电阻为负温度系数,更换时应注意。

标签: