为研究储能飞轮对游梁式抽油机性能的影响及节能效果,从理论上推导了影响电动机输出功率的数学模型,并建立了飞轮储能游梁式抽油机的虚拟样机模型,采用ADAMS进行仿真分析验证了模型的可行性,并探讨了不同传动比和转动惯量对游梁式抽油机性能的影响。结果表明:抽油机工作在上冲程时飞轮释放能量,在下冲程时飞轮吸收能量;游梁式抽油机中安装储能飞轮可有效降低电机启动扭矩,并减小电机扭矩、功率和速度的波动幅值;随着储能飞轮转动惯量的增大各项参数的波动幅值均有所减小,但一定程度上延长了电机的启动时间;通过计算电机功耗发现,在不同飞轮转动惯量下,飞轮还可以抑制倒发电现象,且随着转动惯量增大电机平均功率减小,使游梁式抽油机节能效果更为明显。
游梁式抽油机一直占据着石油工业传统机采设备的主导地位,由于游梁式抽油机的固有结构,导致电机功率波动大,实际工作中效率比较低,生产电能损耗增加。因此,降低电力消耗,减少油气生产成本是刻不容缓的议题。
许多学者对游梁式抽油机进行了相关研究,并提出了节能提效的措施。王义龙等提出将“断续供电”技术应用于油田机采系统,能够获得明显节能效果;Lu等提出双脉冲宽度调制变频器运用于游梁式抽油机,通过电机变频运行达到节能效果;Tian等将小波神经网络应用于抽油机节能控制系统中,并通过实验证明了该系统的可行性和有效性;LYU等提出了一种基于物联网的游梁式抽油机节能系统。通过调研发现,目前对游梁式抽油机节能提效方面的研究大多是通过电机控制和调参等方式对抽油机进行节能优化,对于加入储能装置来提高抽油机效率的研究相对较少。
飞轮储能技术因其储能效率高、储能密度大、对环境无污染等优点而备受关注,Mousavi等述了飞轮储能系统(FESS)的优缺点并提出了今后发展该技术的具体途径;飞轮控制技术和超导轴承技术的出现及Spiryagin等将飞轮储能技术成功地运用于重载机车,为飞轮储能技术在游梁式抽油机上的应用奠定了基础。
鉴于传统地面抽采设备游梁式抽油机的缺点,姜民政等提出飞轮储能游梁式抽油机。飞轮储能游梁式抽油机主要由飞轮、驴头、游梁、横梁、连杆、曲柄,电机和传动系统等组成。其原理示意图见图1,电机输出轴上安装有大小两个带轮,且大小带轮轴通过离合器连接,大带轮通过皮带连接飞轮轴上的带轮,小带轮通过皮带连接减速箱输入轴上的带轮。抽油机运行在上冲程时,飞轮释放能量,在下冲程时飞轮吸收能量,使系统运转趋于平稳,从而改善抽油机工作性能,达到节能降耗的目的。
目前,对于飞轮储能游梁式抽油机的研究相对较少,更没有具体的方案模型,缺少相关的验证。因此,对飞轮储能游梁式抽油机进行研究分析,对提高油田生产效率和降低能耗有着重要意义。